Disclaimer

Published in 2013 by United Nations Industrial Development Organization (UNIDO) and International Center on Small Hydro Power (ICSHP).

2013 © UNIDO and ICSHP

All rights reserved

This report was jointly produced by United Nations Industrial Development Organization (UNIDO) and International Center on Small Hydro Power (ICSHP) to provide information about small hydropower. The document has been produced without formal United Nations editing. The designations employed and the presentations of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNIDO and ICSHP concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO or its partners. The opinions, statistical data and estimates contained in the articles are the responsibility of the author(s) and should not necessarily be considered as reflecting the views or bearing the endorsement of UNIDO and its partners.

While every care has been taken to ensure that the content is useful and accurate, UNIDO and ICSHP and any contributing third parties shall have no legal liability or responsibility for the content or the accuracy of the information so provided, or for any loss or damage caused arising directly or indirectly in connection with reliance on the use of such information.

Copyright: Material in this publication may be freely quoted or reprinted, but acknowledgement is requested, together with a copy of the publication containing the quotation or reprint.

Recommended citation:
3 Asia

3.1 Central Asia

3.2.3 Tajikistan

Ugranath Chakarvarty, International Center on Small Hydro Power

<table>
<thead>
<tr>
<th>Key facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Climate</td>
</tr>
<tr>
<td>Topography</td>
</tr>
<tr>
<td>Rain pattern</td>
</tr>
</tbody>
</table>

Electricity sector overview

Electrification access in Tajikistan is more than 90 per cent, still the country faces severe shortages of electricity. Around 74 per cent of the population resides in rural areas, but represents merely 8-11 per cent of the country’s total electricity consumption. The capital of Tajikistan, Dushanbe, and the aluminium industry consume most of the electric power in Tajikistan. With 8,476 km² of glaciers, 947 rivers stretching over 28,500 km and 1,300 freshwater lakes, landlocked Tajikistan is blessed with abundant water resources. Hydropower contributed about 98 per cent of total electricity production in 2009 (16 TWh), clearly indicating the prominence of hydropower in Tajikistan (figure 1). A large part of the generation comes from large-scale hydropower plants, however due to the sparsely distributed population, small hydropower and especially micro and mini hydropower have an invaluable impact on the socio-economic life of Tajikistan.

The State-owned company Barqi Tojik is the energy monopolist in the country and deals with maintenance of electric power stations and networks, manufacturing, transmission, distribution and selling of electric and heat power.²

![Electricity generation in Tajikistan](source: Taj Hydro³)

Small hydropower sector overview and potential

According to the Law of the Republic of Tajikistan on the Use of Renewable Energy Sources in 2010, hydropower is classified as micro, mini and small if the installed capacity is below 100 kW, 101-1000 kW, and 1001 kW-30 MW respectively. However, a document by the Ministry of Industry and Energy and UNDP Tajikistan from 2007 recommends that the classification be the following for micro <10 kW, mini 10-500 kW and small 500 kW-10 MW.³

According to Tajhydro, 155 small hydropower stations exist in Tajikistan within four regions with a total capacity of 12 MW (table 1 and figure 2). Technically small-scale hydropower in Tajikistan revolves around micro- and mini-hydropower, due to the low population density in rural areas.

Table 1: Installed small hydropower capacity in Tajikistan

<table>
<thead>
<tr>
<th>Region</th>
<th>Total SHP plants</th>
<th>Active SHP plants</th>
<th>Non-active plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Total capacity (kW)</td>
<td>Number</td>
</tr>
<tr>
<td>GBAO</td>
<td>35</td>
<td>3 432</td>
<td>15</td>
</tr>
<tr>
<td>Khatlon Oblast</td>
<td>8</td>
<td>2 185</td>
<td>-</td>
</tr>
<tr>
<td>Sughd Oblast</td>
<td>38</td>
<td>1 882</td>
<td>37</td>
</tr>
<tr>
<td>Districts of Republic Subordination</td>
<td>74</td>
<td>4 685</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>4 686</td>
<td>2 328.3</td>
</tr>
</tbody>
</table>

Source: Tajhydro³

Note: GBAO - Gorno Badakhshan Autonomous Province

Most villages of the country are close to at least one water flow and thus of off-grid small to micro hydropower plants have been constructed and operated by local communities, providing electricity especially during winter when national electricity supply is mostly intermittent. Rivers in Tajikistan are characterized by high currents which make them freeze rarely. The associated equipments are made
from spare parts, but are not periodically maintained and thereby inefficient, and break down with some frequency. At the same time, local communities use such off-grid schemes and pool their limited resources to cover operations and maintenance expenditure.

In recent times, conditions for small hydropower have become favourable. According to Tajhydro’s Small Hydro Power Development Center, preliminary researches show that 900 small scale schemes, each with output between 100-3,000 kW are technically feasible and economically efficient.12 Use of small hydropower has been acknowledged by experts to be able to meet 50-70 per cent of rural areas energy demands and in some cases 100 per cent, based upon the presence of small rivers in predominantly mountainous areas.

In the long term, small-, medium- and large-sized hydropower stations in Tajikistan have the potential of boosting Tajikistan’s economy by exporting electricity and meeting reliable domestic electricity needs for productive uses.

UNDP has been implementing several projects in collaboration with the Government of Tajikistan and has developed three strategic documents to confront poverty issues and development progress highlighting the use small hydropower, namely:13

- Energy Efficiency Master Plan (January 2011)

UNDP has also designed a National Trust Fund for Renewable Energy and Energy Efficiency in Tajikistan. Once the transmission networks to Afghanistan and Pakistan, which are under construction, have been completed, Tajikistan can enhance profitability by trading with these countries.

A preliminary assessment of finance required to incentivize small hydropower development for the period 2009-2020 is shown in table 2. Furthermore, UNDP’s Energy and Environment Programme project ‘Technology Transfer and Market Development for Small Hydropower in Tajikistan’ in collaboration with the Global Environment Facility and UNDP, started in March 2012, will run until December 2015.14

Water infrastructure projects, including the development of hydropower capacity, are a complex issue related to the rights of downstream water users, especially in Uzbekistan and Turkmenistan. Both of

Table 2

<table>
<thead>
<tr>
<th>Period</th>
<th>Planned total installed grid connected capacity (MW)</th>
<th>Additional stand-alone capacity (MW)</th>
<th>Planned annual electricity production from the installed capacity (MWh/year)</th>
<th>Required money to incentivise newly installed capacity in given period (US$)</th>
<th>Total required money in the given period for incentives (US$)</th>
<th>Required money to cover investment costs of stand-alone plants (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2011</td>
<td>43.53</td>
<td>5.00</td>
<td>280.84</td>
<td>5 616 868</td>
<td>5 616 868</td>
<td>5 000 000</td>
</tr>
<tr>
<td>2012-2015</td>
<td>32.85</td>
<td>16.82</td>
<td>185.07</td>
<td>3 701 344</td>
<td>9 318 212</td>
<td>18 620 000</td>
</tr>
<tr>
<td>2016-2020</td>
<td>26.80</td>
<td>73.20</td>
<td>175.74</td>
<td>3 514 706</td>
<td>12 832 918</td>
<td>73 199 000</td>
</tr>
<tr>
<td>Total</td>
<td>103.18</td>
<td>96.82</td>
<td>641.65</td>
<td>27 767 998</td>
<td>96 819 000</td>
<td></td>
</tr>
</tbody>
</table>

Source: United Nations Development Programme15
these countries depend on water from Amu Darya for irrigation purposes. The Water Sharing Protocol of 1987 limits the use of water for hydropower during winter by Tajikistan.\(^{10}\)

With the collapse of Soviet Union, the profitable relationship of Tajikistan along with Kyrgyzstan, providing hydropower in summer to Kazakhstan, Turkmenistan and Uzbekistan and in turn receiving gas and electricity during winters, has ended. In recent times, water rights have become an issue of tension in Central Asia.

Renewable energy policy

Electricity supply in Tajikistan is unreliable and power cuts often recur. However, the potential to utilize renewable energy is tremendous with small hydropower as top priority and solar and wind as other potential renewable sources. The Law of the Republic of Tajikistan on the Use of Renewable Energy Sources was established in 2010, regulating legal relations between public authorities and stakeholders in the area of priority and effective use of renewable energy with an emphasis on international cooperation. It also aims at increasing the level of energy conservation, reducing anthropogenic impact on environment and climate, saving and conserving non-renewable sources of energy. The Energy Law was amended in 2007. Both laws based on Energy (2007) and RES (2010) enable the selling of electricity generated from RES to the grid.\(^{5}\)

Barriers to small hydropower development

- Lack of reliable data on high potential and use of renewable energy;
- Low electricity tariffs;
- Uncertainty in the legal and regulatory framework for private sector participation or independent power producers;
- Monopoly of energy sector;
- Lack of financing and underdeveloped mechanism to both attract and manage resources effectively from donors or state-funded support for decentralized renewable energy development;
- Lack of local expertise in project development and maintenance of small hydropower stations and equipment;
- Lack of awareness on the potential significance of small hydropower technology to reduce winter energy insecurity and correlation of social significance associated with depleting forest wood resources for heating purposes.

References

